

08-00014-02 Proprietary & Confidential – NIVIS LLC

ISA100.11a Simple API Integration Manual

Version 1.8

Date: October 29, 2012

08-00014-02 Nivis ISA100.11a Simple API Integration Manual v1.8 2/33
 Proprietary & Confidential – NIVIS LLC

Revision History

Date Version Description

August 20, 2009 0.1 Document inception

September 13, 2009 0.2 Completed sections 2.2, 2.3, 3.1 and the

corresponding sub-sections

September 28, 2009 0.3 Review

September 29, 2009 0.4 Srinivasa Matta’s TO DO list review

September 30, 2009 0.5 Added CRC and a valid floating point number in

the example. Updated section Simple API over

SPI.

September 30, 2009 0.6 Changed the API Request Retry period.

September 30, 2009 0.7 Reviewed grammar & spelling and formatted.

October 1, 2009 0.8 Added Document Purpose, Audience

subsections in the Introduction.

Added interface with VN210 in Overview

section.

Updated RF Modem Implementation section.

October 2, 2009 0.9 Review of “RF Modem Implementation” chapter

based of the GUI Provisioning Application.

Clear the specification related to the WKU

pulse duration.

October 2, 2009 1.0 Reviewed new sections, replaced CTS/RTS

with ExtCTS/ExtRTS; replaced KBI3 and KBI4

with RDY/WKU; corrected numbering errors.

October 2, 2009 1.1 Swapped RTS and CTS in figure 1 with ExtCTS

and ExtRTS. Changed Ext RTS/Ext CTS to

ExtRTS/ExtCTS.

May 13, 2010 1.2 ExtRTS and ExtCTS pins are corrected in

Figure 1. Text adjustment in timing diagrams.

RDY pin is changed to pin 11. For UART, the

default baud rate is changed to 38400 from

9600. Added List of Figures and closed

comments from Cristina.

May 13, 2010 1.3 Reviewed by Cristina.

September 30, 2010 1.4 Reviewed

January 26, 2011 1.5 Added explanation relating to the publishing

format + non-native publishing example

Added comment at 2.2.2 regarding the

possibility of sending one single message per

WKU signal activation

Removed reference to VS210 Sensor Node

User Guide, because it is not used anymore

April 15, 2011 1.6 Modified the time the VN will wait for the AP to

be ready to receive a message after ExtCTS is

activated(from 25 to 100 ms)

Specified that if using digital values the format

field in Monitoring Host must be int8 or uint8

Removed UAP_DATA_METHODS

Changed the message type values for ACK.

Added descriptions relating to the SPI

08-00014-02 Nivis ISA100.11a Simple API Integration Manual v1.8 3/33
 Proprietary & Confidential – NIVIS LLC

Date Version Description

message exchange limitations.
March 7, 2012 1.7 Added a note about the BOOT KB1 pin

(boot switch)

Added references to the VN310 radio
modem

March 11, 2012 1.7 Updated Figure 7 details table

May 11, 2012 1.7 Correcting clock polarity: 0 for SPI

settings.

October 29, 2012 1.8 Updated details about NACK Response

– main change: Msg. Type 1 = CRC

failed shall not be used

08-00014-02 Nivis ISA100.11a Simple API Integration Manual v1.8 4/33
 Proprietary & Confidential – NIVIS LLC

Table of Contents

1 Introduction .. 7

1.1 Document Purpose ..7

1.2 Audience ...7

1.3 Acronyms and Abbreviations ..7

2 Hardware Integration ... 8

2.1 Overview ...8

2.2 UART Integration ... 10

2.2.1 Full Wake-Up Support without Flow Control (6 pins) ... 11

2.2.2 Modem Wake-Up Support (5 pins) with Flow Control ... 13

2.3 SPI Integration ... 14

2.3.1 Wake Up via HW Support ... 14

2.3.2 No Wake-Up Support .. 16

2.3.2.1 Message Flow ... 16

2.3.3 SPI Settings ... 17

3 Software Integration ... 18

3.1 Simple API ... 18

3.1.1 Overview ... 18

3.1.2 Communication Flow .. 18

3.1.3 API Message Format ... 18

3.1.3.1 Message Header ... 19

3.1.3.2 Special Characters .. 19

3.1.3.3 Data Pass-Through Commands .. 20

3.1.3.3.1 Write Data Request .. 20

3.1.3.3.2 Read Data Request ... 20

3.1.3.3.3 Read Data Response ... 20

3.1.3.4 API Commands ... 21

3.1.3.4.1 API_HW_PLATFORM (0x01) .. 21

3.1.3.4.1.1 Request.. 21

3.1.3.4.1.2 Response ... 21

3.1.3.4.2 API_FW_VERSION (0x02) .. 21

3.1.3.4.2.1 Request.. 21

3.1.3.4.2.2 Response ... 22

3.1.3.4.3 API_MAX_BUFFER (0x03) ... 22

3.1.3.4.3.1 Request.. 22

08-00014-02 Nivis ISA100.11a Simple API Integration Manual v1.8 5/33
 Proprietary & Confidential – NIVIS LLC

3.1.3.4.3.2 Response ... 22

3.1.3.4.4 API_MAX_SPI_SPEED (0x04) ... 22

3.1.3.4.4.1 Request.. 22

3.1.3.4.4.2 Response ... 22

3.1.3.4.5 API_UPDATE_SPI_SPEED (0x05) ... 22

3.1.3.4.5.1 Request.. 23

3.1.3.4.5.2 Response ... 23

3.1.3.4.6 API_MAX_UART_SPEED (0x06) ... 23

3.1.3.4.6.1 Request.. 23

3.1.3.4.6.2 Response ... 23

3.1.3.4.7 API_UPDATE_UART_SPEED (0x07) ... 23

3.1.3.4.7.1 Request.. 23

3.1.3.4.7.2 Response ... 23

3.1.3.4.8 API_UPDATE_POLLING_FREQ (0x08)- For SPI Only .. 24

3.1.3.4.8.1 Request.. 24

3.1.3.4.8.2 Response ... 24

3.1.3.4.9 API_POLLING (0x09) – For SPI Only .. 24

3.1.3.4.10 API_FW_ACTIVATION_REQ (0x0A) ... 24

3.1.3.5 Response ACK ... 25

3.1.3.5.1 Message format .. 25

3.1.3.6 Response NACK .. 25

3.1.3.6.1 Message format .. 25

3.1.4 RF Modem Implementation .. 26

3.1.4.1 UAP_DATA Object .. 27

3.1.4.1.1 UAP_DATA Attributes ... 27

3.1.5 API Messages Example ... 29

3.1.5.1 Writing Analog Data to Application Processor ... 29

3.1.5.1.1 Serial Message – Write data to application processor ... 29

3.1.5.1.2 Serial Message – ACK from the Application Processor ... 29

3.1.5.2 Reading Analog value from Application Processor ... 29

3.1.5.2.1 Serial Message – Read from application processor .. 29

3.1.5.2.2 Serial Message – Response from application processor .. 30

3.1.5.3 Writing Digital data to the Application Processor .. 30

3.1.5.3.1 Serial Message – Write GPIO 1 and GPIO 2 to the application processor 30

3.1.5.3.2 Serial Message – ACK from the Application Processor ... 30

3.1.5.4 Invalid CRC .. 31

3.1.5.5 Valid Response from Application Processor ... 31

3.1.5.6 Invalid or No Response from Application Processor .. 31

3.1.6 Simple API over UART ... 32

3.1.7 Simple API over SPI ... 32

08-00014-02 Nivis ISA100.11a Simple API Integration Manual v1.8 6/33
 Proprietary & Confidential – NIVIS LLC

Table of Figures

Figure 1: Nivis VS210 Field Device - Components ... 8

Figure 2: Pin connection for Communication between VN210/VN310 and Sensor Board 9

Figure 3: UART, Full wake-up support w/o Flow Control (6 pins) communication interface 11

Figure 4: Signals for 6-pin full wakeup UART communication interface ... 12

Figure 5: UART, VN210/VN310 wake-up support w/ Flow Control (5 pins) Communication Interface

.. 13

Figure 6: Signals for 5-pin Modem only wakeup UART communication interface 13

Figure 7: Signal Timings for Full Wakeup SPI communication interface .. 15

Figure 8: SPI Signals: SCLK, MOSI, MISO ... 17

Figure 9: UAP_DATA object attributes .. 27

Figure 10: Periodic Read requests and responses ... 31

Figure 11: Retries scenario- Next read request is at the next period interval boundary 32

Figure 12: Polling messages in Modem only wake-up SPI communication interface 33

08-00014-02 Nivis ISA100.11a Simple API Integration Manual v1.8 7/33
 Proprietary & Confidential – NIVIS LLC

1 Introduction

1.1 Document Purpose
The Nivis ISA100.11a Integration Manual provides information on how to integrate the customer

board with the Nivis VS210 field device or with the VN210/VN310 radio modem, defines various

communication solutions based on the UART/SPI interface, as well as defines APIs to communicate

with the Nivis VS210/VN210/VN310 field device.

1.2 Audience
This document is intended for firmware developers who are involved in the development of

integration firmware on the customer/application processor.

1.3 Acronyms and Abbreviations
ACK – Acknowledgement

ADC – Analog to Digital Converter

API – Application Programming Interface

APP processor – Application Processor (the microcontroller from sensor board)

CRC – Cyclic Redundancy Check

ExtCTS – External Board CTS

DAC –Digital to Analog Converter

GPIO – General Purpose Input/Output

FW – Firmware

HW – Hardware

NACK – Not Acknowledgement

RF processor – The modem microcontroller

Rx/RX – Reception

SPI – Serial Peripheral Interface

Tx/TX – Transmission

UAP – User Application Process

UART - Universal Asynchronous Receiver/Transmitter

08-00014-02 Nivis ISA100.11a Simple API Integration Manual v1.8 8/33
 Proprietary & Confidential – NIVIS LLC

2 Hardware Integration

2.1 Overview
The following picture describes various connectors/modules on the Nivis VS210 field device board.

Power Switch

Power via USB / Batteries

STH1x
Temperature &

Humidity Sensor

WakeUp/Status

push-putton

JTAG
Nivis VN210

radio modem

USB

Serial-To-USB

ExtRTSTX

ExtCTSRX

WKU

GND

GND

J9 - UART

CLKMOSI

SSMISO

WKU

GND

GND

J6 - SPI

RESET
RDY signal for full

wakeup support

(J7, Pin 1)

Figure 1: Nivis VS210 Field Device - Components

08-00014-02 Nivis ISA100.11a Simple API Integration Manual v1.8 9/33
 Proprietary & Confidential – NIVIS LLC

Customers can use the VS210 to demonstrate the functioning of the field device in the ISA100.11a

network, in order to verify the integration of their board. They can also integrate directly with the

Nivis VN210/VN310 radio modem.

The following figure shows the pins for UART2 and SPI interfaces from the VN210/VN310 radio

modem and their equivalent signals in Figure 1 above.

Note1: The communication interface is set by the firmware version loaded on VN210/VN310.

Note2: Please consult the “08-00010-01_Nivis_VN210_HW_Integration_Application_Note.pdf”

or “08-00030-01_Nivis_VN310I_HW_Integration_Application_Note.pdf” for details about KBI1

pin (no. 27 for VN210 or no. 39 for VN310). It is used as a boot switch in order to boot different

firmware images (ISA100 or Wireless HART) based on the position of the switch. For ISA100

firmware this pin must be held HIGH. The VN210/VN310 bootloader sets this pin as an input,

with the internal weak pull-up enabled.

VN210/VN310

1 (ExtRTS) EXTRTS

2(ExtCTS) EXTCTS

3(RX) UART2-RXD

4(TX) UART2-TXD

13/15(CLK) SPI-SCK

14/16(MOSI) SPI-MOSI

15/17(MISO) SPI-MISO

16/18(SS) SPI-SS

GND

(WKU) KBI4 30/42

(RDY) TMR1 11/12

External/

Application

Processor

UART-RTS

UART-CTS

TX

RX

WKU_RADIO

RDY_RADIO

GND

SCLK

MOSI

MISO

SS

Figure 2: Pin connection for Communication between VN210/VN310 and Sensor Board

08-00014-02 Nivis ISA100.11a Simple API Integration Manual v1.8 10/33
 Proprietary & Confidential – NIVIS LLC

2.2 UART Integration
The following settings are used for the UART interface:

¶ Default Baud rate: 38400

¶ Bits: 8

¶ Parity: none

¶ Stop Bits: 1

Applications utilizing the API interface will be provided with a means of adjusting the UART

communications speed/baud rate (API Command API_UPDATE_UART_SPEED). The change in

baud rate by the application processor will be ‘approved’ by the RF Processor to ensure it can still

reliably communicate.

Note: Lower UART baud rates are likely to be the bottleneck in the system. If a user requires higher

system performance, the SPI interface is recommended.

There are two solutions based on UART communication:

¶ Full wake-up support (6 pins) without Flow Control

¶ Modem wake-up support (5 pins) with Flow Control

The application can select which solution to use depending on its processor capabilities and

requirements.

The UART2 signals have a “HIGH” logic level of +3Vdc, and a “LOW” logic level of 0Vdc.

08-00014-02 Nivis ISA100.11a Simple API Integration Manual v1.8 11/33
 Proprietary & Confidential – NIVIS LLC

2.2.1 Full Wake-Up Support without Flow Control (6 pins)

This version is used when the application processor goes to low power for extended time periods

and must be notified before the message exchange. The application board and the modem are

equally powered to wake up the destination and initiate a transfer.

VN210/VN310 Application CPU

RX

TX

ExtRTS

ExtCTS

WKU

GND

RDY

Figure 3: UART, Full wake-up support w/o Flow Control (6 pins) communication interface

Signal name Direction Use

TX Output
As in UART communication, TX and RX are used for data transfer;

RX Input

ExtCTS Output

This signal is active low and is used by the modem to indicate a

want-to-send state. The signal will return to high state after a high to low

transition of the ExtRTS signal.

ExtRTS Input

This signal is active low and is used by the Application CPU to indicate a ready-

to-receive state. It will implicitly confirm the acquisition of ExtCTS low signal to

the modem.

RDY Output

This signal is active low and is used by the modem to indicate a ready-to-

receive state. It will be generated as a response to the Application CPU WKU

signal.

WKU Input

This signal is active high and is used by the Application CPU to wake up the

radio modem CPU from hibernation and to signal the intention to communicate

with the modem. Keeping this line active will block the modem from entering the

low power mode (sleep).

* Changes in the control signals’ active states (low or high) can be made upon request, to accommodate custom

hardware.

08-00014-02 Nivis ISA100.11a Simple API Integration Manual v1.8 12/33
 Proprietary & Confidential – NIVIS LLC

ExtCTS

ExtRTS

TX

WKU

RDY

Rx

Figure 4: Signals for 6-pin full wakeup UART communication interface

¶ There is no flow control for transmitting. Once a message transmission has started, it will

flow without restrictions and without awareness of the receiving capability of the destination.

The destination should be capable of receiving bytes at the arriving speed.

¶ There are no critical timings in handshaking due to the direct wakeup. ExtRTS is asserted as

a response to ExtCTS becoming active, message will start to be transmitted by the modem

as a result of ExtRTS becoming active. Similarly, RDY becomes active as a result of WKU

rising and transmission to the modem should start as a result of RDY becoming active.

¶ There may be a delay of approximately 2ms between the rise of the WKU signal and the fall

of the RDY signal if the modem is sleeping. The modem waits for a message for a minimum

of 3ms before entering low power/sleeping mode.

¶ After activating the ExtCTS signal, the modem will wait for a maximum of 25ms for the

application processor to become ready to receive.

¶ After recognizing the end of an incoming valid message, the modem will not wait for the next

message and may stay ON only to complete current tasks. A second message should be

preceded by another WKU signal.

¶ If RDY is active at the moment of rising WKU, a max 5ms pulse should be generated on the

WKU line.

¶ After receiving a byte, the modem will wait for 5ms and then will stop listening. The

application processor should ensure a fairly continuous stream of bytes for a given message

in order to keep the radio modem in listening mode and prevent it from entering low power

mode.

08-00014-02 Nivis ISA100.11a Simple API Integration Manual v1.8 13/33
 Proprietary & Confidential – NIVIS LLC

2.2.2 Modem Wake-Up Support (5 pins) with Flow Control

This version is used when the application processor is always ready to exchange messages. This

version is based on the UART hardware flow control protocol and the four lines keep regular

significance. As in the case of an activity intensive application that requires the application processor

to be ON, the modem can still go to low power mode for long periods and will be woken up by the

application processor through a wake-up signal added as the 5-th line (WKU).

VN210/VN310 Application CPU

RX

TX

Ext RTS

Ext CTS

WKU

GND

Figure 5: UART, VN210/VN310 wake-up support w/ Flow Control (5 pins) Communication Interface

Signal name Direction Use

TX Output
As in UART communication with hardware flow control:

¶ TX and Rx are used for data transfer;

¶ ExtRTS and ExtCTS controls the flow of data, those are active low signals

RX Input

ExtCTS Output

ExtRTS Input

WKU Input

Used by the Application CPU to alert the modem if a data exchange needs to be initiated.

This is an active high signal and a positive pulse will wake up the modem. Keeping this line

in high state will block the modem from entering in low power mode (sleep).

WKU

TX

RX

ExtCTS

ExtRTS

Figure 6: Signals for 5-pin Modem only wakeup UART communication interface

08-00014-02 Nivis ISA100.11a Simple API Integration Manual v1.8 14/33
 Proprietary & Confidential – NIVIS LLC

¶ The modem has hardware flow control enabled in its peripheral to allow it to tolerate slower

or heavily loaded application processors. This feature (transparent hold/resume) should be

used with moderation since the modem will remain awake and consume power during the

stops. A 5ms delay over the time needed for continuous transmission is tolerated for any

message; subsequently, a timeout will occur and the modem will enter low power mode,

stopping the UART module.

¶ The WKU line is linked to an interrupt that brings the modem out of low power mode. While

the modem is running the UART module is on and capable of handling receiving/transmitting

bytes. After waking up, the modem will wait for at least 3ms for incoming bytes.

¶ After recognizing the end of an incoming valid message, the modem will not wait for the next

message and may stay ON only to complete current tasks. A second message should be

preceded by another WKU signal

¶ Keeping the WKU active will prevent the modem from entering low power.

2.3 SPI Integration
Applications utilizing the SPI interface will be provided with a means of adjusting the SPI

communications speed (API Command API_UPDATE_SPI_SPEED). The change in speed by the

application processor will be ‘approved’ by the RF processor.

The radio modem processor is the master of communication. If the application processor has any

message to be read by the radio processor, it can signal the master by using the WKU signal.

There are two solutions based on SPI communication:

¶ Wake up via HW support

¶ No wake-up support

The application can select which solution to use depending on its processor capabilities and

requirements.

The SPI signals have a “HIGH” logic level of +3Vdc, and a “LOW” logic level of 0Vdc.

Note1: During a communication session initiated by the RF processor (as master), the RF processor can

receive from the application processor only one API Request/Response message (no concatenation of many

RX API messages accepted). In other words, the RF processor not implements an API RX Queue.

Note2: If the RF processor detects a valid incoming message in progress (from the application processor), it

will keep sending the STX character until it receives the complete message.

2.3.1 Wake Up via HW Support

This version will be used when the application processor needs extra time for wake up before being

able to receive an SPI message. Two additional GPIO pins will be used to that effect:

08-00014-02 Nivis ISA100.11a Simple API Integration Manual v1.8 15/33
 Proprietary & Confidential – NIVIS LLC

¶ RDY will be used to wake up the application processor by the RF processor

¶ WKU will be used to wake up the RF processor by the application processor

If the RF processor has data to send to the application processor, it will raise the RDY to HIGH

indicating its intention to send the data. The application processor raises WKU to HIGH for maximum

of 10ms (typical 1-2ms) to indicate that it is ready to receive the data.

If WKU becomes HIGH, the RF processor will start to send the SPI message in maximum 2ms

(typically few microseconds).

If the application processor has data to send to the RF processor, it creates a 1 ms pulse on WKU.

The RF processor will query the application processor. For this reason the Polling Rate is not used

in this configuration.

Figure 7: Signal Timings for Full Wakeup SPI communication interface

 Min Max Typical Comment

T1 - 10 ms - Until WKU becomes high and implicitly depends on the wake up time of the

application processor

T2 - 10 ms 1-2 ms Time to wake up the application processor

T3 0.001 ms 10 ms - Nivis recommends on the application processor side, to reset the WKU signal

after the STX byte reception (or at least the WKU signal should be reset during

the packet reception). Otherwise, if the WKU signal is reset after the packet

reception, an unnecessary transmission of a polling message at the next 250

RDY

 RADIO_SPI_STR

WKU

SS

SCK/MISO/MOSI

T1

T7 T6

0ms

500ms

T1

T3 T2

T4 T5

250ms

08-00014-02 Nivis ISA100.11a Simple API Integration Manual v1.8 16/33
 Proprietary & Confidential – NIVIS LLC

ms timing(see Figure 7) is triggered on RF processor side

T4 - 10 ms 0.01 ms If Nivis recommendation for T3 is respected, typically T4 will be smaller than

T3.

T5 - - - Depends of packet length and SPI frequency.

T5[ms]=PacketLen[bytes]*8*1000/SPI_Freq[kHz]

As example, for default SPI_Freq = 100 kHz,

T5_Min[ms]=7*8*1000/100=0.56, where: 7=Mininum API packet length

T6 - 200 ms - Missing if no response back

T7 0.1 ms 10 ms 1 ms Is used to notify the RF processor when the application processor has data to

send. The Nivis recommendation for T7 is to not go beyond the 250 ms

boundary (see Figure 7) in order to prevent, on the RF processor, treating the

T7 as T3 (response to its last RDY pulse) and implicitly to prevent possible

unexpected data receiving by the application processor, even if as long as the

WKU is active, should mean that the application processor is wake up and

should be able to receive data from RF processor. Missing if no response back.

Note1: Beyond the flow control from above Figure/Table, the WKU timings restriction was implicitly

added because this line have dual role:

a. Wakeup the RF processor when the application processor has data for send to RF processor

(T7 pulse).

b. Confirm to RF processor that application processor is ready to receive data.

2.3.2 No Wake-Up Support

This version is used when the application processor does not require additional time for wake up. In

this architecture the application processor will wake up on SS (Slave Select) transition and will be

able to receive SPI messages without any extra GPIO hand shaking.

2.3.2.1 Message Flow

Since in this version the application processor cannot signal the RF processor, the RF processor

sends a polling message at every polling period, if there is no other message to be sent. The polling

period can be changed by the application processor using API Commands

(API_UPDATE_POLLING_FREQ).

However, when the RF processor sends a request message, it polls the application processor after

250ms, irrespective of the current polling period.

RF processor originator:

1. RF processor sends request message (REQ/RSP flag is 0).

08-00014-02 Nivis ISA100.11a Simple API Integration Manual v1.8 17/33
 Proprietary & Confidential – NIVIS LLC

2. RF processor sends polling message after 250ms and during this message the application

processor sends back a response or ACK message (REQ/RSP flag is 1, message ID is the

same as in the request).

Application processor originator:

1. RF processor sends any message (may be a polling message if not any message), the

application processor sends back a request message (REQ/RSP flag is 0).

2. RF processor sends response or ACK message (REQ/RSP flag is 1, message id is the same

as on request)

2.3.3 SPI Settings

The following settings are used for SPI communication:

¶ Default Speed: 100 KHz

¶ Max Speed: Processor dependant

¶ Clock polarity: 0 (data is captured on the first UCLK edge and changed on the following

edge)

¶ Clock phase: 0 (data is captured on the first UCLK edge and changed on the following edge)

Figure 8: SPI Signals: SCLK, MOSI, MISO

The Most Significant Bit is transmitted first in the byte. The data is latched on the rising edge of

SCLK.

08-00014-02 Nivis ISA100.11a Simple API Integration Manual v1.8 18/33
 Proprietary & Confidential – NIVIS LLC

3 Software Integration

3.1 Simple API

3.1.1 Overview

The Simple API (Application Programming Interface) protocol is designed to define a standard

interface between the application processor and the RF modem processor. In this architecture the

RF modem processor is the master of communication. All messages are handled on a FIFO basis by

the RF modem processor. The applications do not require the specifics of the ISA100 protocol stack

and they can map their data to one and/or more of the channels (4 analog and 4 digital) described in

UAP_DATA object.

3.1.2 Communication Flow

Communication between the application processor and the RF modem processor is based on two

main kinds of packets: requests and responses. All request packets must be followed by a

response/ACK/NACK. The receiving processor must respond with the response/ACK/NACK in 250

ms maximum. If the sender processor does not receive the response/ACK/NACK within the

response time window, the message will be sent repeatedly until a response/ACK/NACK is received.

A message is considered as a response to a request if it meets all of the following criteria:

¶ it is a response (the Req/Rsp flag from the Message Header must be 1) (See section API
Message Format)

¶ the Message ID field is the same as on the request

¶ the message type is ACK/NACK

If there are many messages in the RF processor message queue, response messages will be sent

first.

3.1.3 API Message Format

Field Size
(Bytes)

Values Comments

STX 1 0xF1 This is the start character for every message. When it is received,
the receiver discards any other Rx message in progress and starts
receiving this new message.

Message Header 1 Bit field See Message Header

Message Type 1 Depends on Message Class in the Message Header

Message ID 1 Used for correspondence between request and response

Data Size 1 The number of data bytes in the message (without the CRC field)

Data 0…X The request/response message data

CRC 2 CRC is based on a standard CRC algorithm (CCITT-CRC, 0x1021
as the polynomial) and includes everything between, but not
including, the STX and CRC. The initial value is 0xFFFF.

08-00014-02 Nivis ISA100.11a Simple API Integration Manual v1.8 19/33
 Proprietary & Confidential – NIVIS LLC

Note: “X” Data size is processor/implementation dependant and the application processor can read the max

buffer size of the radio modem processor using the API command API_MAX_BUFFER.

3.1.3.1 Message Header

Bit 7 6 5 4 3 2 1 0

Description Message Class Request/
Response

Reserved

The Request/Response bit indicates whether a message is a request or a response: 0 = Request,

1=Response.

The following message classes are available:

Field Size
(Bits)

Values Comments

Message
Class

4 1 = DATA_PASS-
THROUGH
2 = RESERVED
3 = RESERVED
4 = API COMMANDS
5 = ACK
6 = NACK

3.1.3.2 Special Characters

There are two special characters described inside below table:

Char Values Comments

STX 0xF1 Start of packet

CHX 0xF2 Escape character

The STX is a special character that indicates the start of a new packet. The sender is allowed to

abort the current packet and start a new packet by sending the STX in the middle of a packet.

Therefore, the packet data needs to be protected if it contains any STX character. The escape

character CHX is used for this purpose.

Note: The CRC field is calculated based on the un-escaped packet data.

All packet characters including the CRC field (excluding the STX field) will be escaped with the

escape character CHX, i.e. if any of the characters in the packet is:

¶ STX (0xF1): It will be replaced with two characters: 0xF2 (CHX) and 0x0E (1’s complement

of 0xF1),

¶ CHX (0xF2): It will be replaced with two characters: CHX (0xF2) and 0x0D (1’s complement

of 0xF2).

08-00014-02 Nivis ISA100.11a Simple API Integration Manual v1.8 20/33
 Proprietary & Confidential – NIVIS LLC

In other words, whenever the receiver receives a CHX character, it should discard it and the next

character is 1’s complemented. < See example >

3.1.3.3 Data Pass-Through Commands

The Data Pass-Through message category comprises three sub-commands:

Message Type Values Comments

Write Data Request 1 Writes data to the application processor (sensor board) (RF CPU Ą
Application CPU)

Read Data Request 2 Requests data to the application processor (sensor board) (RF CPU
Ą Application CPU)

Read Data Response 3 Receives data from the application processor (sensor board)
(Application CPU Ą RF CPU)

Notes:

¶ For all Data Pass-Through commands, the application process specifies the “Attribute ID”

parameter which uniquely identifies the data entity.

¶ The RF modem stack does not perform any assumption about the “Attribute Value”, but

passes the response from the application processor as it is to the Monitor Host Application,

which will interpret the data. The attribute value is of 4 bytes, with the first byte as Most

Significant byte.

¶ The analog channel attribute value is a 4 bytes float (32-bit IEEE 754) and the attribute value

for the digital channel (0/1) is in the LSB byte.

3.1.3.3.1 Write Data Request

Field Size (Bytes) Values Comments

Data Size 1 5 x AttributesNo

Data … Attribute ID1 (1 byte) +
Attribute Value1 (4
bytes)+

- array of attribute descriptors (ID +
Value) having “AttributesNo” size;
- MSB first for Attribute Value

3.1.3.3.2 Read Data Request

Field Size (Bytes) Values Comments

Data Size 1 AttributesNo

Data … Attribute ID1(1 byte) + - array of Attribute IDs having
“AttributesNo” size;

3.1.3.3.3 Read Data Response

Field Size (Bytes) Values Comments

Data Size 1 5 x AttributesNo

Data … Attribute ID1(1 byte) +
Attribute Value1(4 bytes)+

- array of attribute descriptors (ID +
Value) having “AttributesNo” size;
- MSB first for Attribute Value
- the message will be received by the
RF modem based on a previous sent
“Read Data Request” command.

08-00014-02 Nivis ISA100.11a Simple API Integration Manual v1.8 21/33
 Proprietary & Confidential – NIVIS LLC

3.1.3.4 API Commands

The table below lists the sub-commands/message types for the message class API_COMMANDS

and a short description for each API command.

Message Type Values Description

API_HW_PLATFORM 1 Reads API Hardware version from RF modem (Application CPU
Ą RF CPU)

API_FW_VERSION 2 Reads API Firmware version from RF modem (Application CPU
Ą RF CPU)

API_MAX_BUFFER 3 Reads API buffer size from RF modem (Application CPU Ą RF
CPU)

API_MAX_SPI_SPEED 4 Reads max SPI speed from RF modem (Application CPU Ą RF
CPU)

API_UPDATE_SPI_SPEED 5 Sets SPI speed to RF modem (Application CPU Ą RF CPU)

API_MAX_UART_SPEED 6 Reads max UART speed from RF modem (Application CPU Ą
RF CPU)

API_UPDATE_UART_SPEED 7 Sets UART speed to RF modem (Application CPU Ą RF CPU)

API_UPDATE_POLLING_FREQ 8 Sets POLLING frequency of RF modem (for SPI only)
(Application CPU Ą RF CPU)

API_POLLING 9 Polling message (for SPI only) (RF CPU Ą Application CPU)

API_FW_ACTIVATION_REQ 10 Notifies application processor about new firmware activation
(RF CPU Ą Application CPU)

3.1.3.4.1 API_HW_PLATFORM (0x01)

This command is used by the application processor to read the hardware platform processor type of

the radio modem processor.

3.1.3.4.1.1 Request

Field Size (Bytes) Values Comments

Data Size 1 0x00

3.1.3.4.1.2 Response

Field Size (Bytes) Values Comments

Data Size 1 2

Data 2 Processor Type
0x0000 - MSP430
0x0001 - HCS08
0x0002 - ARM7
0x0003 - ARM9

MSB first

3.1.3.4.2 API_FW_VERSION (0x02)

This command is used by the application processor to read the radio modem processor firmware

version.

3.1.3.4.2.1 Request

Field Size (Bytes) Values Comments

Data Size 1 0x00

08-00014-02 Nivis ISA100.11a Simple API Integration Manual v1.8 22/33
 Proprietary & Confidential – NIVIS LLC

3.1.3.4.2.2 Response

Field Size (Bytes) Values Comments

Data Size 1 0x02

Data 2 Firmware version
MSB Byte - Major version
LSB Byte - Minor version
(e.g. 0x0102 -> Version 01.02)

MSB first

3.1.3.4.3 API_MAX_BUFFER (0x03)

This command is used by the application processor to read the maximum size of the receive buffer

of the radio modem processor.

3.1.3.4.3.1 Request

Field Size (Bytes) Values Comments

Data Size 1 0

3.1.3.4.3.2 Response

Field Size (Bytes) Values Comments

Data Size 1 2

Data 2 API buffer size in bytes MSB first

3.1.3.4.4 API_MAX_SPI_SPEED (0x04)

This command is used by the application processor to read the maximum SPI speed supported by

the radio modem processor.

3.1.3.4.4.1 Request

Field Size (Bytes) Values Comments

Data Size 1 0

3.1.3.4.4.2 Response

Field Size (Bytes) Values Comments

Data Size 1 0 or 1

Data 1 1 – N/A
2 – N/A
3 – N/A
4 – 100 kHz
5 – 200 kHz
6 – 250 kHz
7 – 500 kHz
8 – 1 MHz
9 – 2 MHz

3.1.3.4.5 API_UPDATE_SPI_SPEED (0x05)

This command is used by the application processor to update the SPI speed of the radio modem

processor. The default SPI speed is 100 KHz. The application processor can read the maximum SPI

speed supported using the API_MAX_SPI_SPEED command.

08-00014-02 Nivis ISA100.11a Simple API Integration Manual v1.8 23/33
 Proprietary & Confidential – NIVIS LLC

3.1.3.4.5.1 Request

Field Size (Bytes) Values Comments

Data Size 1 1

Data 1 1 – N/A
2 – N/A
3 – N/A
4 – 100 kHz
5 – 200 kHz
6 – 250 kHz
7 – 500 kHz
8 – 1 MHz
9 – 2 MHz

4 is default (100 KHz)

3.1.3.4.5.2 Response

ACK – If the request is accepted. The SPI clock speed is changed immediately and the ACK is sent

at the new clock speed.

NACK – If the request is not accepted.

3.1.3.4.6 API_MAX_UART_SPEED (0x06)

This command is used by the application processor to read the maximum baud rate supported by

the radio modem processor.

3.1.3.4.6.1 Request

Field Size (Bytes) Values Comments

Data Size 1 0

3.1.3.4.6.2 Response

Field Size (Bytes) Values Comments

Data Size 1 1

Data 1 1 – 9600
2 – 19200
3 – 38400
4 - 115200

3 is default
(38400)

3.1.3.4.7 API_UPDATE_UART_SPEED (0x07)

This command is used by the application processor to update the baud rate of radio modem

processor. The default baud rate is 38400. The application processor can read the maximum baud

rate supported using the API_MAX_UART_SPEED command.

3.1.3.4.7.1 Request

Field Size (Bytes) Values Comments

Data Size 1 1

Data 1 1 – 9600
2 – 19200
3 – 38400
4 - 115200

3.1.3.4.7.2 Response

ACK – If the request is accepted. The ACK message is sent with the new baud rate.

NACK - If the request is not accepted.

08-00014-02 Nivis ISA100.11a Simple API Integration Manual v1.8 24/33
 Proprietary & Confidential – NIVIS LLC

3.1.3.4.8 API_UPDATE_POLLING_FREQ (0x08)- For SPI Only

3.1.3.4.8.1 Request

Field Size (Bytes) Values Comments

Data Size 1 1

Data 1 1 – Not used
2 – Not used
3 – Not used
4 – 500 ms
5 – 1 s
6 – 60 s

4 is default
This command is used only in SPI Non Wakeup
solution.

3.1.3.4.8.2 Response

ACK – If the request is accepted.

NACK – If the request is not accepted.

3.1.3.4.9 API_POLLING (0x09) – For SPI Only

Field Size (Bytes) Values Comments

Data Size 1 0

Data - Used for receiving messages from the application processor

This command is used only in the SPI interface to allow the application processor to send any

message (either a new request or a response to a previously received request).

In the SPI non wake-up solution, this message is sent 250ms after sending a request message or at

every API_UPDATE_POLLING_FREQ (default 500ms) period to check whether the application

processor has a message to send.

Note: The application processor can send its message during the reception of any message (not

necessarily an API_POLLING message) from the radio modem processor.

If the radio modem processor detects an incoming message (start byte STX) during the transmission

of any message, it will read it by sending STX bytes, if required, after sending the current message.

3.1.3.4.10 API_FW_ACTIVATION_REQ (0x0A)

Field Size (Bytes) Values Comments

Data Size 1 20

Data 20 4 bytes TAI cutover
16 bytes FW version

TAI cutover is big endian format

08-00014-02 Nivis ISA100.11a Simple API Integration Manual v1.8 25/33
 Proprietary & Confidential – NIVIS LLC

3.1.3.5 Response ACK

The message sent from the application processor to the RF processor has been received and it is

being processed. If the application requires additional information regarding this message, the

message ID is provided. If requested in the original message, a successful transmission response

will be sent referencing this ID.

3.1.3.5.1 Message format

Field Size (Bytes) Values Comments

STX 1 When this character is received, the receiver discards
any other Rx message in progress and starts receiving
this new message.

Message Header 1 0x58 ACK

Message Type 1 1 = Data received properly
2= Message processed and sent via RF channel.
3= Change to API accepted (i.e. UART Speed Change)
4= Firmware upgrade page accepted

Message ID 1 0xNN NN = Message ID used in referencing this message
transaction.

Data Size 1 0x0 The number of data bytes in the buffer

CRC 2

3.1.3.6 Response NACK

The NACK response confirms that the API request message (Request/Response field = 0) identified

by the “Message ID” field has been properly received (CRC was successfully validated) but there is

inconsistent data inside the API message (e.g. Message Type or/and Class unknown, the requested

operation/s fail(s)).

3.1.3.6.1 Message format

Field Size (Bytes) Values Comments

STX 1 When this character is received, the receiver discards
any other Rx message in progress and starts receiving
this new message.

Message Header 1 0x68 NACK

Message Type 1 0xXX 1 = Reserved
2 = Data Overrun
3 = Packet incomplete
4 = Parity Error
5 = API not initialized
6 = API Command Error
7 = API Busy
8 = API Error
9 = Stack Error
10 = Unsupported feature in this release.
11 = Firmware update error.

Message ID 1 0xNN NN = Message ID used in referencing this message
transaction.

Data Size 1 0x0 The number of data bytes in the buffer

CRC 2

Note: In case of a received API message with CRC failure, the message will be discarded without

any notification. If the received API message was an API Request, the radio will resend it because

no paired API Response has been received. This retry mechanism should be implemented also on

the application processor in case of no response for its requests.

08-00014-02 Nivis ISA100.11a Simple API Integration Manual v1.8 26/33
 Proprietary & Confidential – NIVIS LLC

3.1.4 RF Modem Implementation

For the Simple API interface, the RF modem can act as the UAP instead of implementing necessary

objects on the application processor. This option is limiting in that only a single UAP is available with

3 objects: UAP_MO (management object), UAP_DATA (NIVIS custom data object) and the

UAP_CO (concentrator object). The UAP_MO object is mandatory and in compliance with the

ISA100.11a specifications (requested in the ISA100.11a standard for each application process), the

UAP_DATA is a general data object comprising 8 pieces of analog data, 4 pieces of digital (binary)

data and 8 pieces reserved for future use. The concentrator object can be configured to publish

attributes of the UAP_DATA object to the gateway or to another device (in a local loop

configuration).

The radio modem can be provisioned to publish data from up to 10 of the following inputs: (from

ISA100Provisioning Application, Commands File Editor).

For the data publishing, the radio modem will use a non-native publish format as follows:

Field Size
(Bytes)

Values Comments

Content Version 1 0x00 to 0xFF Identifies the set of attributes to be published. It is
equivalent with the provisioning
DPO_UAP_CO_VERSION parameter from ISA100
Provisioning Application

Sequence Number 1 0x00 to 0xFF Indicates the time sequence of the publish packets. Will
be incremented with each new publish packet sent.

Data Size 1 N(e.g. 0x05) Depends on the number and type of the attributes(see
3.1.4.1.1 UAP_DATA Attributes) to be published

Data N (eg.0x40F1F21301) Inside this example one Analog and one Digital input
are published

08-00014-02 Nivis ISA100.11a Simple API Integration Manual v1.8 27/33
 Proprietary & Confidential – NIVIS LLC

VS210/VN210/VN310 Application CPU

UART/SPI

UAP_DATA_INPUT_TEMP
UAP_DATA_ANALOG_1

UAP_DATA_INPUT_HUMIDITY

UAP_DATA_INPUT_DEWPOINT

UAP_DATA_BATTERY

UAP_DATA_ANALOG_2

UAP_DATA_ANALOG_3

UAP_DATA_ANALOG_4

UAP_DATA_DIGITAL_1

UAP_DATA_DIGITAL_2

UAP_DATA_DIGITAL_3

UAP_DATA_DIGITAL_4

Figure 9: UAP_DATA object attributes

As shown in the figure 9, four of these inputs (UAP_DATA_INPUT_TEMP,

UAP_DATA_INPUT_HUMIDITY, UAP_DATA_INPUT_DEWPOINT, and UAP_DATA_BATTERY) are

internal inputs to the VS210. Please note that these inputs are not available in the VN210/VN310

and a device should not be configured to publish data from these inputs when integrating directly

with the VN210/VN310. The radio modem reads the data for the remaining 8 inputs (when

provisioned) from the application CPU based on the API defined in this document.

3.1.4.1 UAP_DATA Object

3.1.4.1.1 UAP_DATA Attributes

Nivis object type: General Data

Object Type Identifier: 129

Defining organization: NIVIS

Attribute Name Attribute
Identifier

Attribute
Description

Attribute Data Information

Description of
Behavior of Attribute

Object Identifier Key
identifier

Unique
identifier for
the object

Type: Unsigned16 N/A

Classification: Constant

Accessibility: N/A

Initial default value: 0

Valid value set: 0

Reserved for future use 0

DATA_Analog_1 1 Type: Float ADC/DAC

Classification: Dynamic

Accessibility: Read/Write

Initial default value: 0

Valid value set:

DATA_Analog_2 2 Type: Float ADC/DAC

Classification: Dynamic

Accessibility: Read/Write

Initial default value: 0

Valid value set:

DATA_Analog_3 3 Type: Float ADC/DAC

Classification: Dynamic

Accessibility: Read/Write

Initial default value: 0

Valid value set:

DATA_Analog_4 4 Type: Float ADC/DAC

08-00014-02 Nivis ISA100.11a Simple API Integration Manual v1.8 28/33
 Proprietary & Confidential – NIVIS LLC

Nivis object type: General Data

Object Type Identifier: 129

Defining organization: NIVIS

Attribute Name Attribute
Identifier

Attribute
Description

Attribute Data Information

Description of
Behavior of Attribute

Classification: Dynamic

Accessibility: Read/Write

Initial default value: 0

Valid value set:

DATA_Analog_Temp 5 Type: Float Temperature

Classification: Dynamic

Accessibility: Read

Initial default value:

Valid value set:

DATA_Analog_Humidity 6 Type: Float Humidity

Classification: Dynamic

Accessibility: Read

Initial default value: 0

Valid value set:

DATA_Analog_DewPoint 7 Type: Float Dew Point (from
temperature +
humidity)

Classification: Dynamic

Accessibility: Read

Initial default value: 0

Valid value set:

DATA_Analog_Battery 8 Type: Float Battery voltage

Classification: Dynamic

Accessibility: Read

Initial default value: 0

Valid value set:

Reserved for future use 9-15

DATA _Digital_1 16 Type: Boolean GPIO

Classification: Dynamic

Accessibility: Read/Write

Initial default value: 0

Valid value set: 0 or 1

DATA _Digital_2 17 Type: Boolean GPIO

Classification: Dynamic

Accessibility: Read/Write

Initial default value: 0

Valid value set: 0 or 1

DATA _Digital_3 18 Type: Boolean GPIO

Classification: Dynamic

Accessibility: Read/Write

Initial default value: 0

Valid value set: 0 or 1

DATA _Digital_4 19 Type: Boolean GPIO

Classification: Dynamic

Accessibility: Read/Write

Initial default value: 0

Valid value set: 0 or 1

Reserved for future use 20-255

Note:If using the DATA_Digital attributes, when configuring Monitoring Host make sure that in the

Channels section the Format variable is either int8 or uint8

08-00014-02 Nivis ISA100.11a Simple API Integration Manual v1.8 29/33
 Proprietary & Confidential – NIVIS LLC

3.1.5 API Messages Example

3.1.5.1 Writing Analog Data to Application Processor

3.1.5.1.1 Serial Message – Write data to application processor

Field Size (Bytes) Values Comments

STX 1 0xF1 When this character is received, the receiver discards any other
Rx message in progress and starts receiving this new message.

Message Header 1 0x10 Data Pass-Through + Request Type

Message Type 1 0x01 Write Data Request

Message ID 1 0x03 3
rd

 message being processed.

Data Size 1 0x05

Data 5 0x01F23456F1 Write 0xF23456F1 into data entity matched with Attribute ID = 1

CRC 2 0xXXXX CRC

ĄF1 10 01 03 05 01 F2 0D 34 56 F2 0E XX XX (CHX and STX characters in the request are

escaped by the Radio Modem processor)

3.1.5.1.2 Serial Message – ACK from the Application Processor

Field Size (Bytes) Values Comments

STX 1 When this character is received, the receiver
discards any other Rx message in progress and
starts receiving this new message.

Message Header 1 0x58 ACK + Response Type

Message Type 1 0x01 Data received properly

Message ID 1 0x03 3
rd

 message being processed.

Data Size 1 0x00 0 Bytes in data buffer

CRC 2 0xXXX
X

CRC

ăF1 58 01 03 00 XX XX

3.1.5.2 Reading Analog value from Application Processor

3.1.5.2.1 Serial Message – Read from application processor

Field Size (Bytes) Values Comments

STX 1 0xF1 When this character is received, the receiver discards any other
Rx message in progress and starts receiving this new
message.

Message Header 1 0x10 Data Pass-Through + Request Type

Message Type 1 0x02 Read Data Request

Message ID 1 0x04 4
th
 message being processed.

Data Size 1 0x01

Data 1 0x01 Read data entity matched with Attribute ID = 1

CRC 2 0xXXXX CRC

ĄF1 10 02 04 01 01 XX XX

08-00014-02 Nivis ISA100.11a Simple API Integration Manual v1.8 30/33
 Proprietary & Confidential – NIVIS LLC

3.1.5.2.2 Serial Message – Response from application processor

Field Size (Bytes) Values Comments

STX 1 When this character is received, the receiver discards
any other Rx message in progress and starts receiving
this new message.

Message Header 1 0x18 Data Pass-Through + Response Type

Message Type 1 0x03 Read Data Response

Message ID 1 0x04 4
th

 message being processed.

Data Size 1 0x05

Data 5 0x0140F1F213 Update UAP_DATA’s the DATA_Analog_1 attribute
with value 0x40F1F213 (~7.5608)

CRC 2 0x6F9F CRC

ăF1 18 03 04 05 01 40 F2 0E F2 0D 13 6F 9F

- STX and CHX characters are escaped in the response by the application processor

- No change in either data length/size or the CRC value because of the escaping.

3.1.5.3 Writing Digital data to the Application Processor

3.1.5.3.1 Serial Message – Write GPIO 1 and GPIO 2 to the application processor

Field Size (Bytes) Values Comments

STX 1 0xF1 When this character is received, the receiver discards
any other Rx message in progress and starts receiving
this new message.

Message Header 1 0x10 Data Pass-Through + Request Type

Message Type 1 0x01 Write Data Request

Message ID 1 0x05 5
th
 message being processed.

Data Size 1 0x0A

Data 10 0x10 00000001
0x11 00000001

Set GPIO 1 and 2(matched with Attribute ID = 16 and
Attribute ID = 17), both to High value (LSB byte = 0x01).

CRC 2 0xXXXX CRC

ĄF1 10 01 05 0A 10 00 00 00 00 01 11 00 00 00 01 XX XX

3.1.5.3.2 Serial Message – ACK from the Application Processor

Field Size (Bytes) Values Comments

STX 1 0xF1 When this character is received, the receiver discards any other
Rx message in progress and starts receiving this new message.

Message Header 1 0x58 ACK + Response Type

Message Type 1 0x01 Data received properly

Message ID 1 0x05 5
th
 message being processed.

Data Size 1 0x00 0 Bytes in data buffer

CRC 2 0xXXX
X

CRC

ă F1 58 01 05 00 XX XX

08-00014-02 Nivis ISA100.11a Simple API Integration Manual v1.8 31/33
 Proprietary & Confidential – NIVIS LLC

3.1.5.4 Invalid CRC

The radio modem processor discards any message with an invalid CRC from the application

processor.

3.1.5.5 Valid Response from Application Processor

The radio modem processor reads/samples data from the application processor repeatedly, at half

the publish period. In the following figure the publish period is assumed to be 20 seconds, hence the

sampling period is 10 seconds.

0 secs 10 secs 20 secs

Read Requests from Radio Modem

TX/MOSI

0 secs 10 secs 20 secs

Read Responses from Application

Processor (RX/MISO)

Figure 10: Periodic Read requests and responses

3.1.5.6 Invalid or No Response from Application Processor

If there is no response from the application processor, the radio modem processor resends the

request at every TResponse Timeout. The value of the response timeout time is 500 ms for the SPI

communication interface and 250 ms for the UART communication interface.

08-00014-02 Nivis ISA100.11a Simple API Integration Manual v1.8 32/33
 Proprietary & Confidential – NIVIS LLC

0 secs 10 secs 20 secs

Read Requests from Radio Modem

0 secs 10 secs 20 secs

Read Responses from Application

Processor

Repeated read request if there is no

ACK/Response

T Response Timeout

Figure 11: Retries scenario- Next read request is at the next period interval boundary

3.1.6 Simple API over UART

UART offers physical support for the simple API communication.

The following are changes imposed by the UART communication:

¶ the physical channel is not synchronous, therefore both devices should have a reference

clock and should be able to communicate at the same speed

¶ the polling message is not needed anymore

3.1.7 Simple API over SPI

SPI offers physical support for the simple API communication. The specific features of this bus

impose some singularities.

The following are changes imposed by the SPI communication:

¶ The physical channel is synchronous, therefore it will not impose any clock restrictions to the

application processor.

08-00014-02 Nivis ISA100.11a Simple API Integration Manual v1.8 33/33
 Proprietary & Confidential – NIVIS LLC

¶ There is always a master and a slave. The modem was chosen to be the master so it uses

the polling message to allow the slave to transmit.

If the application is using a non wake-up version, it can be in sleep mode (with wake up on SPI

message). The Application CPU is woken up by the polling message at every polling period (default

value is 500ms). The application can change the polling period using the API command

API_UPDATE_POLLING_FREQ.

0

0 secs

250ms

R
e

a
d

 R
e

q
u

e
s
t

P
o

lli
n

g
 m

e
s
s
a

g
e

P
o

lli
n

g
 m

e
s
s
a

g
e

R
e

a
d

 R
e

s
p

o
n

s
e

10

U
p

d
a

te
 P

o
lli

n
g

F
re

q
(1

S
e

c
)

Application Processor can send its messages during any incoming message

Message sent by Application

Processor during polling

message

Message sent by Application

Processor during read request

10 secs

P
o

lli
n

g
 m

e
s
s
a

g
e

500ms

1000ms

R
e

a
d

 R
e

q
u

e
s
t

P
o

lli
n

g
 m

e
s
s
a

g
e

P
o

lli
n

g
 m

e
s
s
a

g
e

P
o

lli
n

g
 m

e
s
s
a

g
e

Figure 12: Polling messages in Modem only wake-up SPI communication interface

